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A SPRING-MASS REPRESENTATION OF A
FREE-FREE NONUNTFORM BAR IN RESPONSE TO
LONGITUDINAL FORCES

By Harold P. Frisch
Langley Research Center

SUMMARY

A method is presented for solving the problem of the longitudinal response
of a free-free nonuniform bar to an arbitrary force applied at one end, based
upon a spring-mass model of the bar. The equations obtained are solved for the
case of a uniform bar with a particular set of applied forces and the results
are compared with the exact solutions of the corresponding boundary-value prob-
lem. ‘The comparisons indicate that only a few mass points need be used in the
spring-mass model to describe the displacements and a considerable number must
be used to describe the forces accurately. Furthermore, it is indicated that
the local accelerations are not readily obtainable by this method.

INTRODUCTTON

An exact solution of the boundary-value problem governing the response of
a free-free nonuniform bar acted upon at one end by a time-dependent force is,
in general, Impossible or impractical to obtain. Therefore, either approximate
methods of solution must be used or solutions for amenable problems of analogous
systenms or models. One analogous system with both conceptual simplicity and a
problem that can be reduced to a matrix form easily programed for an automatic
computer is the spring-mass system. With such a system the bar is represented
by a finite number of mass points connected in series by linear, massless
springs.

The purpose of this investigation is to gain some indication of what mass-
point density is necessary to predict accurately displacements, stresses, and
local accelerations. For this purpose the spring-mass model has been employed
to derive the equations which approximately describe the displacements, stresses,
and local accelerations at any point of the free-free nonuniform bar with an
arbitrary force applied at one end. The equations obtained are solved for a
5- and a 20-spring-mass model of a free-free uniform bar with 4 different spe-
cific forces and the results are compared with the exact solution of the
boundary-value problem which the spring-mass model attempts to represent. Smith
in reference 1 used the spring-mass model in the study of the longitudinal



response of a free-free bar which was impacted at one end, and Seigel and Waser
in reference 2 used this model to determine the longitudinal response of a
fixed-end bar subjected to a rectangular force pulse.

SYMBOLS
A cross-sectional area of bar
an(X) =2n + 1 - X
bn(X) =2n + 1 + X
E Young'!s modulus of elasticity
F applied force
f(?) = p(%) parabolically rising forcing function
F(E) = r(t) ramp-rise forcing function

F(E) = u(®) unit-step forcing function

F(T) = 8(%) impulsive forcing function

[kj square matrix defined by equation (2k)

kn spring constant of nth spring

i length of bar

M total mass of bar

Lm-l diagonal matrix defined by equation (23)
my mass of nth mass point

N number of mass points in spring-mass model
n positive integer

an(T) nth element in column matrix {E(E)}
{E(T:‘)} column matrix of functions to be determined



Er
t time
t1,to dimensional times (constants)
X distance measured along bar

s . 1 1

Xn position of nth mass point, § -3
Yn(t) displacement from initial position of nth mass point at time +t
{Y(t)} column matrix defined by equation (25)
Y(x,t) displacement of point x on bar at time +
Ey] modal matrix, N by N
¥ij jth element in eigenvector (mode) associated with ith eigenvalue
{yn} nth eigenvector
o) mass density
l&él spectral matrix, N by N
wn2 nth eigenvalue associated with nth elgenvector
T variable of integration
Subscripts:
N number of mass points in spring-mass model
n positive integer
r reference value

Matrix notations:

{ } column matrix



)

transpose matrix

A dot over a symbol denotes the derivative with respect to time; two dots
denote the second derivative with respect to time.

A bar over a symbol denotes a nondimensional quantity.

ANATYSIS

The Boundary-Value Problem

The longitudinal motion of a bar, initially at rest, with a time-dependent
force applied at one end is determined by the following classic partial differ-

ential equation:

and the conditions

where

Y(x,t)
E(x)

p(x)

d BY(x,t{] ~ 37¥(x,1t)
—|E(x) A(x) ——=2—=| = p(x) A(x) —=2*= (1)
ox Ax Bte
-
¥(x,0) = 0 E(x) A(x) é%’ﬂ - 0o
f (2)
BYéx,t) -0 B(x) A(x) oY(x,t) - F(t)
t t=0 ox x=1 ’J

time

distance measured along bar

length of bar

displacement of point x on bar at time t

Young's modulus of elasticity for material of which bar is made

mass density of the bar material

L-3380



A(x) cross-sectional area of the bar
F(t) force applied at end of bar

For the nonuniform bar, equations (1) and (2) can be nondimensionalized by
choosing reference values Ey, pp, and Apr and defining the following

quantities:
x=Z (3)
T =1 %i (%)
T = % (5)
B(z) - K1) (6)
A(z) - 45 (1)
(%) - "ff) (8)
T(x,%) - DT (9)
F(T) = rir F(TT) (10)

It follows that dimensionless forms of equations (1) and (2) can thus be
expressed as

o o, _
2I5(x) K(m) LD | - 5(z) w(zx) SEEL) (11)
>3 ox SE2



and

~
Y(%X,0) = 0 %ﬁﬂ =0
* z=0
P (12)
X(X,%) =0 EZX) AKX H(x,%) = F(¥)
ot — ox Z=1
T=0 x= )
Solutions for a Uniform Bar
For a uniform bar, equations (11) and (12) reduce to
e — o
0 Y(x,t) 07¥(%,t) (13)
e %2
and
\
-Y-(Y,O) 0 aY(X,'t) =0
ox =
x=0
/ (1%)
a?(zc_—,'f) =0 oY(X,%) = (T)
ot 30 S X
</

The solution of these equations may be obtained by means of the Laplace
transform. (See, for example, ch. 8 of ref. 3.) For present purposes the equa-
tions describing the displacement, force, and local acceleration at any section
along the bar are desired. These parameters are given, respectively, by

(. T -1/ 1 7 cosh sX
Y(x,t) = L = (s
%) {s ()sinhs}

e R0 Z[e-anﬁ)s * e-bn(f)s]}

n=0

- Z f " &) {EE"an(l_{ﬂ + H[T-bn(i[]} ar (15)

n=0 Y0



X(X,t) _ -1 5(s) sinh sX
o sinh s

y {:f[j{—an(iﬂ #(F-n(7)) - FE-on(%)] H[?—bn@} (6)
n=0

and
5% X,t _ L-l{S ?(s) cc?sh s'i}
552 sinh s
=) lFean®] = A FE®)] o~
= z [—af_]_ HB'an(X)j + —Ea—;—]— HB—bn(xﬂ} (17)

n=0

where

an(X) =2n + 1 - X

n(X) =2n + 1 + X

T(s) 4is the inverse Laplace transform of F(t) or, symbolically,

L"l{f(s)} = F(t), where s 1is a parameter

H[] is a function which equals 1 if the term in brackets is positive and
equals O if the term in brackets is negative

Equations (15), (16), and (17) state mathematically the fact that the signal is

transmitted along the bar at a velocity equal to = and that when a signal

arrives at either end of the bar it is reflected. Thus, it may be noted that
the constant T given by equation (4) is the time required for a signsgl to
traverse the length of the bar.

Equations (15), (16), and (17) represent an exact solution to the boundary-
value problem stated and will be evaluated and discussed subsequently for four
particular forcing functions F(T). It should be mentioned that the accelera-
tion (eq. (17)) is directly proportional to the derivative of the forcing func-
tion with respect to time, with a time delay; consequently, some care must be



taken in trying to assign pbysical meaning to local acceleration in which

OF(T)

F(t) or 5 is discontinuous.

Differential Equations for the Spring-Mass Representation of a Bar

As indicated in the introduction, the boundary-value problem for a non-
uniform bar, given by equations (1) and (2), is solvable only in a few very
special cases. However, the equations describing the motion of a spring-mass
model of this bar are more tractable and may be solved by matrix techniques.
The governing equations along with a systematic method of solution are derived
in the following paragraphs.

Figure 1 shows a schematic representation of the spring-mass model of a
nonuniform bar. In general, the location and mass of the mass points is a
matter of engineering judgment. In some applications it is convenient to take
equal intervals between successive mass points and to assign to the nth mass
point at x5 a mass represented by

EntXn+l
2
my = m(x) dx (18a)
X7 . l+Xn
2

where m(x) 1is the mass per unit length of the bar. For the uniform bar, all
the mass stations may be evenly spaced and equation (18a) reduces to

(18b)

mnp =

2=

for all n where M is the total mass of the bar and N is the total number
of mass points.

For either a uniform or a nonuniform bar, the spring constant k, of the
spring connecting the mass points mp and my,; 1is given by

Xn+l
1. f _ax (19a)
kp Xn E(x) A(x)
which for the uniform bar reduces to
kp = NZ_EA (19b)



Let Ynp(t) ©be the displacement (positive up in fig. 1) at time t of the
nth mass point from its initial position. Then the response of the system
which is initially at rest and is excited at the Nth mass point by a force
F(t) is described by a system of equations which takes the matrix form

[_m_]{ii(t)} +[k]<¥(t)} - {F(t)} (20)

and the initial conditions

{x

{1}

{o} (21)
{o} (22)

where
ml (0] _1
mp
| =] = : (23)
Y Iy
-Ky ki + kp ko
-ko ko + k3 -k3

=
hal
]

(24)

-ky-1  ky-1 + by -ky




r
Y,(t)

Yo(t)

{x(t)} =< ' ? (25)

Yool t)
)
and

/'OW

0

{F(+)} =< . (26)

0

F(t)

o

By means of equations (4), (5), and (10) and the following four equations

{20 = 1{xx)) (27)
(%] - 3 (4] (20

{F®)} - ﬁ{F(T'f)} (29)

- 1
[k] = [k] L E———(x‘;xA(x) (30)
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equations (20), (21), and (22) can be written in dimensionless form as follows:
5(E® ) + [F{3@) - (7)) (31)

{x(0)} = {o} (32)

{2} = (o) (33)

Solution of the Differential Equations

_ _ The classical method of solving equation (31) is to expand the unknown
Y(¥) in terms of the normal modes of oscillation of the homogeneous equation

F{EE) + [F]E®) - (o) (34)

(See ch. 1 of ref. 4.) This leads to a system of uncoupled ordinary differen-
tial equations. For simple harmonic motion this equation becomes

' : [E] {) = wngtﬁ]{ Yn) (35)

The N orthogonal eigenvectors {:yn}> and their N associated eigenvalues

ahg of equation (35), which can be rapidly and accurately obtained by the
Serial-Jacobi methodl, are the N normal modes and frequencies of equation (34).
The modal matrix |y of the system is defined to be an N by N matrix whose

columns are the normal modes <:yn:>. The normal modes of equation (34) are

determined only to within a multiplicative constant. In the following work it
is convenient to choose this constant so that [y] satisfies the condition of

orthonormality which is

51 - L o
where [;’J is the transpose of [y]

lIndividuals having access to data processing installations holding member-
ship in SHARE may refer to program NY EVV.
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An N by N diagonal matrix [aQ} which will also be used is constructed

so that the element on the diagonal in the ith column is the eigenvalue associ-
ated with the eigenvector in the ith column of [y]. Substituting

{x®> - [v]{a® (37)

into equations (31), (32), and (33) and premultiplying each term in the
resulting expressions by the transpose of the modal matrix [y] leads to a

system of uncoupled equations, namely (see, for example, ref. 5)
(G + & {a@®) - [{FE) (38)
with initial conditions as follows:

{a(0)) = {0} (39)
{3} = {o) (k0)

From the N uncoupled ordinary differential equations in equation (38)
and the initial conditions given in equations (39) and (40) it is possible to
determine the following formula for the general element ﬁh(t) in the column

matrix {E(?)} :

T .
TW(®) = v j; s_lzh_“hlf(zq) ar (b1)

where y . is the Nth element in the nth eigenvector and wy, is the natural

frequency associated with the nth eigenvector. Then, by means of the matrix
equation (37), it is possible to determine the displacement Ynh(t) of each

mass point. The local acceleration Yh(?) of the mass point at station X,
can be found by differentiating matrix equation (37) - that is

(@) - [v]){iEy (42)

where éh(f) can be found from equation (38). The total longitudinal force at

12



any point X on the spring connectihg the n and (n - 1) mass of a uniform
bar is taken to be

N(E,t) _ v (r — —
—é_f— ~ N[Yn(t) - Yn_l(t)] (43)

A

for all X in the internal X, ; S X < Xj.

SPECIFIC FORCING FUNCTIONS

The specific dimensionless forcing functions f(jc-) used in the calcula-
tions presented in this paper are the following:

(1) The impulsive forcing function F(¥) = &(t) where

fm 5(t) at = 1 (44)
and
5(Ft) = 0 (T #£0)
(2) The unit-step forcing function F(t) = u(t) where
u(t) = 0 (t < 0)
— _ (45)
w®) =1 (t* > 0)
(3) The ramp-rise forcing function F(t) = r(t) where
~N
r(t) =0 (t <0)
r(E) = % 0sETsT)) (46
I‘("E) =1 (Ez < E

13




(4) The parabolically rising forcing function F(T) = p(t) where

~
p(%) =0 (Ts0)
2(%) %2—2 stst)
_ _2 > (%7)
e S~ e - — -
P(t)_'fl-‘fe. ¥1-¥2+"52(€1-52) (tlétgte)
p(?) =1 (Eg < E.)J

Graphs of the three forces described in equations (45) to (U47) are shown
plotted as functions of time in figure 2.

The values of %i and Eé used in the calculations were obtained by
taking T = 0.352 sec, tj = 0.05 sec, and to = 0.1 sec which by equation (5)

implies that t] = 0.142 and tp = 0.284. The value of T chosen is repre-

sentative of the time required for a signal to traverse the length of a large
Nova class vehicle, and the quantity tp is representative of the time required
for a solid-fuel rocket engine to achieve maximum thrust. The last three
forcing functions are chosen to be representative of the longitudinal forces
experienced by missile-type structures during lift-off. They were chosen so
that a study could be made of the effect of the time history of the applied
force prior to attaining its maximum on the forces and local accelerations in
the bar.

-

RESULTS AND DISCUSSION

The equations describing the displacements, forces, and local accelera-
tions of points along a uniform bar, obtained approximately by the analysis
just presented and given exactly by equations (15), (16), and (17), have been
evaluated by using the four forcing functions defined and a 5- and a 20-spring-
mass representation of the bar. By comparing the results, some indication can
be obtained of how well this spring-mass solution approaches the exact solution
as the mass-point density is increased.

The comparisons made between the solution of the problem of the spring-mass
representation of a uniform bar and the exact solution of the corresponding
boundary-value problem are shown in figures 3 to 15. Each of the figures shows
either dimensionless displacements, forces, or local accelerations plotted as
functions of dimensionless time. The solid-line curve in each figure represents

1k



results from the exact solution of the boundary-value problem, and the dashed-
line curve represents results from approximate solution. For convenience in
making comparisons, figures 3 to 15 have been arranged in three sets so that
figures 3 to 5 are those associated with displacements, figures 6 to 11 are
those associated with forces, and figures 12 to 15 are those associated with
local accelerations.

In the set of figures pertaining to displacements, the spring-mass solu-
tions obtained at specific mass stations X, are compared with the exact solu-

tions obtained for X = X, on the uniform bar. In figures 3 and 4, the dis-

placement history of specific points along the bar excited by an impulsive force
is shown. The exact solution shows that the displacement curve increases in a
series of steps. In figure 3 it is seen that the 5-spring-mass solution gives

a fair representation of the displacement. However, as should be expected, the
20-spring-mass solution shown in figure U4 comes closer to representing the
details of the exact solution in some respects.

In figure 5 the displacement, calculated exactly, due to a unit force is
shown and is compared with a 5-spring-mass solution. The curves based on this
solution are a very close approximation to those based on the exact solution.
It should be noted that the displacement shown is predominantly rigid-body
motion. The 20-spring mass solution will naturally approximate the exact solu-
tion with a greater degree of accuracy than the 5-spring-mass solution but the
difference between these two solutions is very slight and hence the 20-spring-
mass solution is not shown.

Furthermore, the displacements associated with the ramp rise and the para-
bolically rising force are also omitted since they are predominantly rigid-body
motion and are almost the same as the displacements obtained with a unit forcing
function.

Figures 6 to 11 pertain to the forces. In these figures the approximate
force obtained in the interval X, ; £ X < X from equation (43) is compared

with the exact solution determined at X = %[ih-l + ih]. It should be recalled

that the approximate force is constant over the interval because of an absence
of inertial forces within the interval. Figures 6 and 7 are associated with
the unit forcing function, figures 8 and 9, with a ramp-rise force, and fig-
ures 10 and 11, with a parabolically rising force. The 5-spring-mass solutions
are superimposed on the exact solution in figures 6, 8, and 10, and the
20-spring-mass solutions are superimposed in figures 7, 9, and 11. It is evi-
dent from figures 6 to 11 that the curves obtained from the 20-spring-mass solu-
tion can approximate the curve obtalned from the boundary-value problem with a
higher degree of accuracy than can those based on the 5-spring-mass solution.
Furthermore, it can be observed in figures 6, 8, and 10 that the curves
describing the forces existing in the springs of the 5-spring-mass model are
nearly independent of the applied forces considered; that is, the shape and
amplitude of the curves in figures 6, 8, and 10 are essentially the same. In
figures 7, 9, and 11 the curves describing the forces in the springs of the
20-spring-mass model would follow the curves obtained from the exact solution

15



of the boundary-value problem almost exactly if it were not for the oscillations
which are superimposed on the general shape of the approximate curve. The
amplitude of these oscillations about the exact curve increases as the peak
values of the first derivatives of the applied forces with respect to time
increase.

The exact and approximate curves describing the time history of the local
accelerations are shown in figures 12 to 15. In these figures the results of
the approximate solutions obtained at the specific mass stations X, are com-
pared with the results of the exact solution obtained for X = Xp. Only the

accelerations associated with the ramp-rise force (figs. 12 and 13) and the
parabolically rising force (figs. 14 and 15) are shown since these two forces
are the only ones considered which lead to meaningful results. It may be
recalled that only the ramp-rise and parabolically rising forces lead to accel-
eration histories which are realizable. In figures 12 and 14 the results of
the 5-spring-mass solution are shown, and in figures 13 and 15 the results of
the 20-spring-mass solution are shown.

In figures 12 and 1k, associated with the 5-spring-mass solution, it
may be seen that the curves describing the local acceleration of the mass points
associated with either the ramp-rise or the parabolically rising force have the
same general shape but differ in magnitude. It may also be noted that, in both
cases, all the peak values obtained from the exact solution of the boundary-
value problem are grossly underestimated by the 5-spring-mass solution. By
examination of equation (17) and figures 12 to 15 it may be found that the
local acceleration obtained from the exact solution to the boundary-value prob-
lem is made up of a series of pulses of duration %é = t%/T where ts 1is the

time required from t = 0 for the force to reach its constant value. In addi-
tion, it should be noted that near either end of the bar these pulses overlap
and reinforce each other; these pulses will hereinafter be referred to as rein-
forced pulses. For example, reinforced rectangular pulses are seen to exist at
stations 0.1 and 0.9 in figure 12 and reinforced triangular pulses are seen to
exist at stations 0.1 and 0.9 in figure 1k.

The 20-spring-mass solutions of the local accelerations are shown in fig-
ures 13 and 15. 1In figure 13, which is associated with the ramp-rise force it
may be seen that the 20-spring-mass solution is capablée of predicting the
arrival time and the magnitude of the rectangulgr pulses which are not rein-
forced. For the reinforced pulses it becomes evident that if the reinforced
part is of very short duration the peak values of the reinforced pulse will be
underestimated. In figure 15, which is associated with the parabolically rising
force, the curve for the 20-spring-mass solution tends to round off and hence
t0 underpredict the peak values of all the triangular pulses which are not rein-
forced, that is, those at stations 0.575 and 0.175. For the stations at which
reinforced triangular pulses occur, the approximate solution again underesti-
mates the peak values at all stations shown except at station 0.075. It should
be observed, however, that at station 0.075, there is a relatively long time
between the two peaks of the reinforced pulse, for which the acceleration is
constant and that this constant is very nearly equal to the peak value of the
acceleration at station 0.075.
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The existence of oscillations with large positive and negative amplitude
in the 20-spring-mass solution is more pronounced in the curves which attempt
to predict the local accelerations than it is in the curves which attempt to
predict the forces at points along the uniform bar. These oscillations are
inherent in the spring-mass model and tend to mask the exact solution of the
boundary-value problem. Thus, it is impossible to predict accurately the peak
values of the local acceleration at all points along the bar with a spring-mass
model having 20 or fewer mass points.

CONCLUDING REMARKS

In the present paper an attempt has been made to evaluate an approximate
method of solving the problem of the longitudinal response of a nonuniform bar
with an arbitrary force applied at one end. The method involved replacing the
bar by a spring-mass model. The equations describing the displacements, forces,
and local accelerations at points in this model were obtained by means of a
modal analysis. These equations were specialized to the case of a uniform bar,
for which the problem of longitudinal responses can be solved exactly. Compari-
sons were then made between the exact and the approximate expressions describing
the displacements, forces, and local accelerations at specific points along the
uniform bar for specific forces. For the forces which were considered, the dis-
placement history of any point along the uniform bar was found to be predomi-
nantly rigid-body motion and, therefore, independent of the mass-point density.
It also appears that, for these applied forces, the force history at any point
along the uniform bar could be approximated satisfactorily with 20 mass points
and, in addition, it was shown that a 20-spring-mass model is not capable of
accurately predicting the actual acceleration history at all the points along
the bar.

Langley Research Center,
National Aeronautics and Space Administration,
lLangley Station, Hampton, Va., April 11, 196k,
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F(1)

ftettt

(a) Nonuniform bar.

[ *N-4

(b) Spring-mass analogy.

Figure 1.~ Nonuniform bar and its spring-mass analogy with applied force F(t) applied at one end.
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(a) F(T) = u(T); step force.

(p) ¥(T) = r(T); ramp-rise force.

(¢) F(%) = p(t); parabolically rising force.

Figure 2.- Sketch of different applied forces acting at station one.



0 — — — Five-spring-mass solution
Exact solution

y Y(x, 1)

Dimensionless displacement

10
sk -
6_
4_
2._ {c) x = 0.l

- 1 1 1 1 | ]
o] oo 2 3 4 5 6 7 8

Dimensionless time, 1

Figure 3.- Comparison between displacement Y(E,'f) obtained by an exact and an approximate analysis
for uniform bar with applied force F(t) = 8(%).
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0 — — — Twenty-spring-mass solution
Exact solution

Y(x,1)

o
@
£
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9
. a
S IOT
£ sf
: t
‘S 6....
[~ -
Q
£ af
o o
2r (c) X = 0.475.
o L o [ DR B ]
o
8f- .
6_
4_
2r (d) X = 0.025.
| | SRS ISR S |
) n 2 3 4 5 6 7 8

Dimensionless time, t

Figure 4.- Comparison between displacement 'Y_(':E,T;') obtained by an exact and an approximate analysis
for uniform bar with applied force F(%) = &(%).
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— — — Five-spring-m
30+t Exact solution

ass solution

%,1)

Dimensionless displacement, Y(

[ 1
0O | 2 3

Dimension

Figure 5.- Comparison between displacement Y(X,t)

4 5 6 7 8

less time, t

obtained by an exact and an approximate analysis

for uniform bar with applied force F(T) = u(t). (See fig. 2 for sketch of u(%).)
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20 (0) X = 0.8. — — — Five-spring-mass solution
Exact solution
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obtalned by an exact and an approximate
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with applied force F(T) = r(%). (See fig. 2 for sketch of r(T).)
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L-3380

(See fig. 2 for sketch of p(¥).)
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